📦 Complete Tool Suite
1. iOS Testing App
- Interactive workout scenarios
- Real-time progress monitoring
- Manual and automated control
2. Python Automation
- Command-line execution
- Batch testing capabilities
- Custom workout support
3. HTML Reports
- Beautiful test reports
- Performance charts
- Trend analysis
4. Live Dashboard
- Real-time visualization
- WebSocket streaming
- Live metrics
5. Regression Suite
- Automated regression testing
- Baseline comparison
- Performance benchmarking
🚀 Complete Workflow Examples
Workflow 1: Daily Development Testing
Scenario: Developer making firmware changes
# Morning: Set baseline
python regression_suite.py --run-all --set-baseline
# After code changes: Quick validation
python test_automation.py --all
# Detailed test with monitoring
python live_monitor.py & # Terminal 1
python test_automation.py --workout intervals # Terminal 2
# End of day: Regression check
python regression_suite.py --run-all --compare
# Generate report
python test_reporter.py --results test_results.json
Expected Time: 20 minutes total
Tools Used: All 5
Workflow 2: Pre-Release Validation
Scenario: Preparing for production release
Day 1: Full Regression Suite
python regression_suite.py --run-all
python test_reporter.py --results regression_results_*.json
Day 2: Extended Stability Test
python regression_suite.py --category stability
# Runs for 5 minutes minimum
Day 3: Real-World Simulation
# iOS App: Run all 10 workout scenarios
# OR via command line:
for workout in intervals endurance recovery tabata ftp; do
python test_automation.py --workout $workout
sleep 30
done
Final: Comprehensive Report
python test_reporter.py --results test_results.json \
--output release_validation_report.html
Expected Time: 3 hours spread over 3 days
Deliverable: HTML report for stakeholders
Workflow 3: Continuous Integration
GitHub Actions Integration:
# .github/workflows/test.yml
name: Automated Testing
on: [push, pull_request]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Install dependencies
run: pip install colorama tabulate
- name: Run regression tests
run: python regression_suite.py --run-all --quick
- name: Generate report
run: python test_reporter.py --results regression_results_*.json
- name: Upload report
uses: actions/upload-artifact@v2
with:
name: test-report
path: test_report_*.html
- name: Check for regressions
run: python regression_suite.py --compare || true
🔧 Advanced Integration Techniques
Technique 1: Parallel Testing
Test multiple devices simultaneously:
#!/bin/bash
# parallel_test.sh
# Device 1
python test_automation.py --workout intervals --node-id 1 &
PID1=$!
# Device 2
python test_automation.py --workout endurance --node-id 2 &
PID2=$!
# Device 3
python test_automation.py --workout recovery --node-id 3 &
PID3=$!
# Wait for all
wait $PID1 $PID2 $PID3
echo "All tests complete!"
Technique 2: Data Collection Pipeline
# collect_and_analyze.py
import subprocess
import json
from datetime import datetime
def run_test_collect_data():
# Run test
subprocess.run(["python", "test_automation.py",
"--workout", "intervals"])
# Collect results
with open("test_results.json", "r") as f:
results = json.load(f)
# Analyze
tests = results['tests']
avg_power = sum(t['avg_power'] for t in tests) / len(tests)
# Store in CSV
with open("performance_log.csv", "a") as f:
f.write(f"{datetime.now()},{avg_power}\n")
# Generate report
subprocess.run(["python", "test_reporter.py",
"--results", "test_results.json"])
if __name__ == "__main__":
run_test_collect_data()
Technique 3: Alerting System
# alert_on_failure.py
import subprocess
def send_alert(subject, body):
# Email/Slack/Discord notification
print(f"ALERT: {subject}")
print(body)
def run_tests_with_alerts():
result = subprocess.run(
["python", "regression_suite.py", "--run-all"],
capture_output=True
)
if result.returncode != 0:
send_alert(
"🚨 Test Failure Detected",
"Regression tests failed. Check logs."
)
else:
send_alert(
"✅ All Tests Passed",
"Regression suite completed successfully."
)
if __name__ == "__main__":
run_tests_with_alerts()
📊 Data Analysis & Visualization
Export Data for Analysis
# export_metrics.py
import json
import csv
def export_to_csv(json_file, csv_file):
with open(json_file, 'r') as f:
data = json.load(f)
with open(csv_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Timestamp', 'Test', 'Status',
'Avg_Power', 'Avg_HR'])
for test in data['tests']:
writer.writerow([
data['timestamp'],
test['name'],
test['status'],
test.get('avg_power', 'N/A'),
test.get('avg_hr', 'N/A')
])
export_to_csv('test_results.json', 'analysis.csv')
Trend Analysis
# trend_analysis.py
import pandas as pd
import matplotlib.pyplot as plt
def plot_trends(csv_file):
df = pd.read_csv(csv_file)
plt.figure(figsize=(12, 6))
plt.plot(df['Timestamp'], df['Avg_Power'], marker='o')
plt.title('Average Power Trend')
plt.xlabel('Test Run')
plt.ylabel('Power (W)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('power_trend.png')
print("✅ Trend plot saved")
plot_trends('analysis.csv')
🎓 Best Practices
1. Test Early, Test Often
# Before commit
python test_automation.py --all
# After commit
python regression_suite.py --quick
# Before merge
python regression_suite.py --run-all
2. Maintain Baselines
# Update baseline after validated changes
python regression_suite.py --run-all
python regression_suite.py --set-baseline
# Compare regularly
python regression_suite.py --compare
3. Document Results
# Always generate reports
python test_reporter.py --results test_results.json
# Archive reports
mkdir -p reports/$(date +%Y-%m)
mv test_report_*.html reports/$(date +%Y-%m)/
4. Automate Everything
# master_test.sh
echo "🚀 Starting complete test suite..."
python test_automation.py --all || exit 1
python regression_suite.py --run-all || exit 1
python test_reporter.py --results regression_results_*.json
python regression_suite.py --compare
echo "✅ All tests complete!"
📈 Performance Metrics
| Metric | Target | Critical | Measurement |
|---|---|---|---|
| Connection Time | <5s | <10s | Time from power-on to ready |
| Command Latency | <2s | <5s | Matter command response time |
| Update Rate | 1 Hz | >0.5 Hz | BLE notification frequency |
| Success Rate | >98% | >90% | Commands successful |
| Stability (1hr) | >99% | >95% | Uptime without errors |
✅ Testing Checklist
Pre-Release Checklist
- All regression tests pass
- iOS app tested on real device
- Zwift integration verified
- 45-minute stability test passed
- Performance benchmarks met
- HTML reports generated
- Baseline updated
- Documentation current
- Known issues documented
- Demo video recorded
Daily Development Checklist
- Quick test suite runs (<5 min)
- No new regressions
- Commit messages reference tests
- CI pipeline green
- Changes documented
🚀 Quick Command Reference
# iOS App
Open app → Test Workouts → Select → Start
# Python Quick Test
python test_automation.py --all
# Full Regression
python regression_suite.py --run-all
# Live Monitoring
python live_monitor.py
# Generate Report
python test_reporter.py --results test_results.json
# Compare Performance
python test_reporter.py --compare old.json new.json
You now have a complete professional testing ecosystem! 🎉
All tools work together seamlessly for comprehensive testing coverage.